
TypeScript
Implementation
in Aria Automation

Image by BWI from HerdieckerhoffStefan Schnell – TypeScript in Aria Automation – Version 1.0 1

10
. S

ep
te

m
be

r 2
02

4

Agenda

10
. S

ep
te

m
be

r 2
02

4

2Image by Pexels from Pixabay

01

Introduction

02

TypeScript and
Security Benefits

03

Implementation

04

Updates and Runtime
Environment Updates

Stefan Schnell – TypeScript in Aria Automation – Version 1.0

05

Findings, Miscellaneous and
Questions

10
. S

ep
te

m
be

r 2
02

4

3Stefan Schnell – TypeScript in Aria Automation – Version 1.0

Introduction
• Stefan Schnell

• 60 Years

• Nearly four years at BWI GmbH as Senior IT-Architect at Cloud & Platform Technologies department

• Focus on data center automation
with VMware Aria Automation (formerly vRealize Automation – vRA)

• Specialized on integration scenarios with different platforms, interfaces and programming languages

• More information:
https://stschnell.de/ - Private homepage
https://blog.stschnell.de/ - VCF Automation blog
https://linkedin.com/in/stefan-schnell/ - LinkedIn profile

https://stschnell.de/
https://blog.stschnell.de/
https://linkedin.com/in/stefan-schnell/

TypeScript
10

. S
ep

te
m

be
r 2

02
4

4Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• TypeScript is a scripting language developed by Microsoft.
It bases on the ECMAScript 6 standard.

• It was developed by Microsoft to simplify the development of large JavaScript applications.

• It is a superset of JavaScript, because it transpiles the TypeScript source code into JavaScript code.
This means that every JavaScript program is a TypeScript program.

• TypeScript adds static typing to JavaScript.
This allows to add a specific type to each variable, e.g. String, Boolean or Number.
But TypeScript offers by Design no guarantees for type safety.

• Furthermore the use of extended functions such as classes (OOP), inheritance, modules, etc. is possible.

• TypeScript is an advantage when working in larger projects with several developers.

• It can help to build a consistent code base and avoid errors that can occur when
different developers use different JavaScript conventions.

Security Benefits
10

. S
ep

te
m

be
r 2

02
4

5Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• The TypeScript transpiler finds type errors during transpilation (compilation time).
It prevents that these errors are passed to the runtime.

• This static typing prevents problems before they can become security vulnerabilities.

• TypeScript helps with validation and maintaining of the type safety.

TypeScript / JavaScript
10

. S
ep

te
m

be
r 2

02
4

6Stefan Schnell – TypeScript in Aria Automation – Version 1.0

function addNumbers(a: number, b: number) : number {
const retValue: number = a + b;
return retValue;

}

const sum: number = addNumbers(10, 15);

const sumErr: number = addNumbers("Stefan", 16);

// Argument of type 'string' is not assignable to parameter of type 'number'

function addNumbers(a, b) {
var retValue = a + b;
return retValue;

}

var sum = addNumbers(10, 15);

var sumErr = addNumbers("Stefan", 16);

Implementation (1) – Requirements

7Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• The TypeScript transpiler from Microsoft has to be implemented.

• It has to be implemented on such a way
that the storage of the TypeScript codes,
the transpilation and
the execution of the resulting JavaScript code
is completely in Aria Automation.

10
. S

ep
te

m
be

r 2
02

4

Implementation (2)

8Stefan Schnell – TypeScript in Aria Automation – Version 1.0

Native TypeScript-Code
• The TypeScript code is saved in an action and read with getActionAsText.

• The TypeScript code is then transpiled,
with the JavaScript action transpileTypeScript,
which calls the Node Action transpileTypeScriptToJavaScript.

• Finally the generated JavaScript code is executed with invokeTypeScript (evaluateString).

• More informationen about evaluateString:
https://www.javadoc.io/doc/org.mozilla/rhino/1.7R4/org/mozilla/javascript/package-summary.html

10
. S

ep
te

m
be

r 2
02

4

https://www.javadoc.io/doc/org.mozilla/rhino/1.7R4/org/mozilla/javascript/package-summary.html

9Stefan Schnell – TypeScript in Aria Automation – Version 1.0

10
. S

ep
te

m
be

r 2
02

4

Implementation (3)

Implementation (4)

10Stefan Schnell – TypeScript in Aria Automation – Version 1.0

10
. S

ep
te

m
be

r 2
02

4

Implementation (5)
Using Aria Automation Objects

11Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• The use of Aria Automation objects requires a different approach.

• The use of native TypeScript takes place in a separate context.
This means that the executed JavaScript code loses its connection to the caller.

• This can be avoided by using the Aria Automation Orchestrator API.

• This makes it possible to use the entire scope of Aria Automation objects.

10
. S

ep
te

m
be

r 2
02

4

Implementation (6)

12Stefan Schnell – TypeScript in Aria Automation – Version 1.0

TypeScript-Code mit Aria Automation Objekten
• The execution of save, read and transpile is the same as for native TypeScript code.

• But the generated JavaScript code is executed with the JavaScript action invokeMixScript.

10
. S

ep
te

m
be

r 2
02

4

Implementation (7)

13Stefan Schnell – TypeScript in Aria Automation – Version 1.0

10
. S

ep
te

m
be

r 2
02

4

Implementation (8)

14Stefan Schnell – TypeScript in Aria Automation – Version 1.0

10
. S

ep
te

m
be

r 2
02

4

Updates

15Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• Five release updates have been made since the initial implementation,
from TypeScript 5.3.3 to 5.4.2, to 5.4.4, to 5.4.5, to 5.5.2 and to 5.5.4.

• The new TypeScript releases were tested with test cases in a simulation environment.

• The modules were then replaced and implemented.

• The new TypeScript release was then checked with test cases in Aria Automation.

• The expected time required is approximately from two to four hours.

10
. S

ep
te

m
be

r 2
02

4

Runtime Environment Updates

16Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• The TypeScript transpilation runs in the context of the Node.js execution environment.

• The Node.js execution environment has been upgraded to version 20 with the Aria Automation release 8.16.2.

• The new Node.js release was tested with the TypeScript release with test cases in a simulation environment.

• The settings of the actions of the Node.js execution environment were then adjusted.

• The new settings of the Node.js execution environment were then checked with test cases in Aria Automation.

• The expected time required is approximately from two to four hours.

10
. S

ep
te

m
be

r 2
02

4

Findings (1)

17Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• In summary, it can be said that the use of TypeScript
in Aria Automation is seamlessly technically possible.

• Working with the Embedded Orchestrator makes handling
in the development process more complicated.
An action can no longer be started via Run, but via an additional action.

• Without JSDoc, it is clear from the source code which data types the variables uses.

• The use of const and let instead of var makes it clear how the variables are used in the code.

• The source code becomes clearer with TypeScript,
because of the more modern language constructs that can be used.

10
. S

ep
te

m
be

r 2
02

4

Findings (2)

18Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• A real advantage can be seen with extensive complex programs that are not documented with JSDoc.

• The proportion of extensive, complex programs in Aria Automation is rather low.
The structural concept of Aria Automation promotes the provision of atomic modules
in the form of actions and scriptable tasks in workflows.
This means that basic approaches are opposed.

10
. S

ep
te

m
be

r 2
02

4

Findings (3)

19Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• An analysis of the 677 JavaScript actions of the namespace com.vmware showed the following distribution in
release 8.18:
595 Actions have less than or 25 lines of code, 88%
74 Actions have less than or 100 lines of code, 11%
8 Actions have more than 100 lines of code, 1%

Maximum 537 lines of code, counted without comments.

• An analysis of the 243 JavaScript actions of the namespace BWI showed the following distribution:
89 Actions have less than or 25 lines of code, 37%

112 Actions have less than or 100 lines of code, 46%
42 Actions have more than 100 lines of code, 17%

Maximum 329 lines of code, counted without comments.

10
. S

ep
te

m
be

r 2
02

4

Findings (4)

20Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• An interface must be declared for each standard Aria Automation object,
so that it can be used to transpile the TypeScript code into JavaScript code without errors.
The initial effort required to build these interfaces is high.

• The return of a JSON that is embedded in an action log requires a considerably more complex conversion,
to get the content for further processing.

• The use of a TypeScript action as an external value source of an element of an input form of a workflow is only
possible to limits, because the return type of this TypeScript action is not compatible.
But this can be achieved by using a wrapper.

10
. S

ep
te

m
be

r 2
02

4

Findings (5)

21Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• VMware Aria Automation can be enriched with
many approaches,
e.g. WebAssembly, here with C and C++, also
possible with Rust, C#, Shared Object or Shared
Library ...

• All the approaches shown here were realized
in Embedded Orchestrator.

10
. S

ep
te

m
be

r 2
02

4

Findings (6)

22Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• The use of TypeScript will be discontinued, because ...

• the complexity of the development process increases.

• the advantages would only apply to a small proportion of JavaScript source codes in Aria Automation.

10
. S

ep
te

m
be

r 2
02

4

Miscellaneous and Questions

23Stefan Schnell – TypeScript in Aria Automation – Version 1.0

• The next generation of a runtime for JavaScript, TypeScript and WebAssembly
is focused, Deno.
A suggestion was submitted at 2024/04/10 in the VCF Feature Request Portal.
It has the status of future consideration.

• All source codes presented here are available on GitHub:
https://github.com/StSchnell/Data-Center-Automation/tree/main/JavaScriptTools/TypeScript/addNumbers

• Are there any comments or questions?

10
. S

ep
te

m
be

r 2
02

4

https://deno.com/
https://github.com/StSchnell/Data-Center-Automation/tree/main/JavaScriptTools/TypeScript/addNumbers

10
. S

ep
te

m
be

r 2
02

4

Thank you very much
for your attention

Stefan Schnell
BWI GmbH

24Image by WikiImages from Pixabay

	Foliennummer 1
	Agenda
	Introduction
	TypeScript
	Security Benefits
	TypeScript / JavaScript
	Implementation (1) – Requirements
	Implementation (2)
	Implementation (3)
	Implementation (4)
	Implementation (5)�Using Aria Automation Objects
	Implementation (6)
	Implementation (7)
	Implementation (8)
	Updates
	Runtime Environment Updates
	Findings (1)
	Findings (2)
	Findings (3)
	Findings (4)
	Findings (5)
	Findings (6)
	Miscellaneous and Questions
	Foliennummer 24

